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Abstract

Purpose — This paper revisits the derivation and properties of the Allen-Uzawa and Morishima
elasticities. Using a Swiss dataset, this paper empirically estimates various elasticities both in a dual
and primal framework using a production theory open economy model and tests for linear
homogenous technology. In addition to reporting elasticity at the mean, the standard practice in the
literature, this paper also calculates nonparametric distribution of various elasticities. The paper aims
to discuss these issues.

Design/methodology/approach — To assess the effect of price change on input, the paper
estimates a translog cost function and to assess the effect of quantity change on price, the paper
estimates the translog distance function using the data on Swiss economy. The paper estimates
Allen-Uzawa and Morishima elasticity both under homogenous and non-homogenous technology
using the Swiss dataset of one aggregate gross output and four inputs (resident labor, non-resident
labor, imports, and capital) over 1950-1986. Elasticities are reported and compared at the mean as well
as explored by looking at the range and nonparametric distribution.

Findings — This paper shows that constant returns to scale are easily rejected in this dataset and that
the elasticities, both qualitatively and quantitatively, are very different under homogenous and
non-homogenous technology. These elasticities can switch from complements to substitutes or
vice versa when one moves away from the mean of the sample. The equality of the nonparametric
elasticity distributions under homogenous vs non-homogenous technology is rejected in all cases
except one.

Originality/value — This paper gives a clear derivation and interpretation of different elasticities as
well as demonstrates using a dataset how to systematically go about empirically estimating these
elasticities in a dual and primal framework. It shows that linear homogenous technology can be easily
rejected and the elasticities, both quantitatively and qualitatively, are very different under homogenous
and non-homogenous technology. This paper is also very valuable because it shows that the standard
practice of reporting elasticity at the mean might not be adequate and there is a possibility that these
elasticities can switch from complements to substitutes or vice versa when one moves away from the
mean of the sample.
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1. Introductory remarks

The elasticity of substitution was introduced by Hicks (1932) and since then thousands
of elasticities have been estimated in different areas of economics. First, this paper
revisits the derivation and properties of different elasticities of substitution. We estimate
these elasticities both under homogenous and non-homogenous technology using a
Swiss dataset on resident and non-resident worker. In the primal quantity space we use
the translog distance function and in the dual price space we use the translog cost
function. Second, this paper shows how the assumption of linear homogenous
technology is often rejected and the usual practice of reporting elasticity at the mean
under two different specification of technology often gives very different results. Last,
but not the least this paper illustrates the use of the nonparametric frequency
distribution for elasticities and compares the probability density functions for various
elasticity’s under linear homogenous and non-homogenous technology. All the papers in
this literature report the elasticities at the mean (Berndt and Wood, 1975; Davis and
Gauger, 1996; Grossman, 1982; Kohli, 1999; Kim, 2000 to name a few). However,
elasticities reported at the mean may not hold at various levels of inputs and for different
time periods and the use of nonparametric frequency distribution might give more
insight into the elasticities. Since there are many generalizations of elasticity measures
and still some confusion on which elasticity needs to be used we begin with an
introduction generalizing Hicks two input elasticity of substitution.

1.1 Generalization of Hicksian elasticity of substitution

Hicks (1932) introduced elasticity of substitution as a tool for analyzing capital and labor
income shares in a growing economy with a constant-returns-to-scale technology and
neutral technological change. Defined as the logarithmic derivative of the capital/labor
ratio with respect to the technical rate of substitution of labor for capital, the elasticity is
higher the “easier” is the substitution of one input for the other (the lesser is the degree of
“curvature” of the isoquant). Under the assumption of cost-minimizing, price-taking
behavior, it is the logarithmic derivative of the capital/labor ratio with respect to the
factor-price ratio (the ratio of the wage rate to the rental rate on capital), and it yields
immediate (differential) qualitative and quantitative comparative-static information
about the effect on relative income shares of changes in factor price ratios.

Under the Hicks two-factor elasticity of substitution, the inverse of the elasticity — the
logarithmic derivative of the technical rate of substitution of labor for capital (the factor
shadow-price ratio) with respect to the capital/labor ratio — contains the same
information, but larger values indicate “less easy” substitution of the two factors for one
another (greater “curvature” of the isoquant). Under the assumption of competitive
factor markets, it yields immediate comparative-static information about the effect on
(absolute and relative) income shares of changes in factor quantity ratios.

Thus, whether one is interested in the effects of changes in factor-price ratios on
factor-quantity ratios or the effects of changes in quantity ratios on price ratios (and in each
case the effects on relative factor shares), the Hicksian two-factor elasticity of substitution
provides complete (differential) qualitative and quantitative comparative-static
information.

Matters get more complicated when one’s analysis of substitutability and the
comparative statics of relative income shares entails more than two factors of
production. Prominent examples in the literature include the analyses of:
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+ the effect of energy-cost explosions using KLEM (capital, labor, energy,
materials) data (Berndt and Wood, 1975; Davis and Gauger, 1996; Thompson and
Taylor, 1995);

« the effect of increases in human capital (or in educational attainment) on the
relative wages of skilled and unskilled labor, with capital as a third important
input (Griliches, 1969; Johnson, 1970; Kugler et al., 1989; Welch, 1970);

+ the substitutability of (multiple) monetary assets (Barnett et al, 1992; Davis and
Gauger, 1996; Ewis and Fischer, 1984);

« the elasticity of substitution between capital and labor in a convex endogenous
growth model where the elasticity of substitution may interact with the level of
development (Karagiannis et al., 2005; Palivos and Karagiannis, 2010); and

* the effect of immigration on the relative wages of domestic and immigrant labor
(Grossman, 1982; Borjas, 1994; Borjas et al., 1992, 1996) or the effect of increase in
the number of guest workers on resident and non-resident labor (Kohli, 1999).

In the literature there exist more than one generalization of the Hicksian two-variable
elasticity of substitution. Allen and Hicks (1934) and Allen (1938) suggested two
generalizations. One, further analyzed by McFadden (1963), eventually lost favor
because it does not allow for optimal adjustment of all inputs to changes in factor prices.
The other, further analyzed by Uzawa (1962), became the dominant concept; perhaps
tens of thousands of “Allen-Uzawa elasticities” have been estimated. Later, Morishima
(1967) and Blackorby and Russell (1975, 1981, 1989) proposed an alternative to the
Allen-Uzawa elasticity; the latter argued that this “Morishima elasticity” has attractive
properties not possessed by the Allen-Uzawa elasticity. Recently, the Morishima
elasticity has been gaining favor (Davis and Gauger, 1996; de la Grandville, 1997; Klump
and de la Grandville, 2000; Ewis and Fischer, 1984; Flaussig, 1997; Thompson and
Taylor, 1995; Stern, 2010, 2011; Kim, 1992)[1].

When one advances to more than two inputs, the measurement of the effect of
changes in price ratios on quantity ratios and the effect of changes in quantity ratios on
price ratios are not simple inverses of one another. The Allen-Uzawa elasticity or what
Stern (2011) calls net p elasticity is formulated in terms of effects of price changes on
mput demands, but many issues revolve around the effect of quantity changes on price
ratios (e.g. the effect of immigration or of increases in the number of guest workers on
relative wages or the effect of increases in the number of skilled workers relative to
unskilled workers on relative wages or return to education). Hicks (1970) suggested a
dual to the Allen-Uzawa elasticity, formulated in terms of a scalar-valued, linearly
homogeneous production function. Blackorby and Russell (1981) formulated elasticity of
complementarity to both the Allen-Uzawa and the Morishima elasticity of substitution
using the distance function, which is symmetrically dual to the cost function employed
by Uzawa to reformulate the Allen elasticity. Kim (2000) calls these Antonelli elasticity
of complementarity and Stern (2010) net ¢ — complements. For further details on the
classification of different elasticities, see Bertoletti (2005) and Stern (2011).

In the duality literature it is well known that the primal space is the quantity space
and the dual is the price space, following Diewert (1971) and Stern (2011) we call the
elasticity calculated with distance function as the direct elasticities of substitution
giving the effect of a change in quantity on price. We call the elasticity of substitution



using the cost function as the dual elasticity of substitution giving the effect of a price
change on the quantity. The Allen-Uzawa elasticity or what we call dual elasticity are
well defined for non-homogeneous production technologies with multiple outputs as
well as multiple inputs. The elasticities of complementarity or what we call the direct
elasticity using the distance function are also well defined for multiple-output,
non-homogeneous production technologies. Non-homogeneity is an especially
important property when more than two inputs are employed, because it is typically
easy to reject homogeneity for production technologies with more than two inputs.

The next section gives the representation of the technology and briefly summarizes
the expression and interpretation for the elasticity in the direct and dual framework
both for the Allen-Uzawa and the Morishima elasticitites[2]. Given that there are many
terminologies in the elasticity literature this section is important for clarifying and
reconciling different concepts and terminologies in the literature. Section 3 describes a
method of estimating these elasticities using, alternatively, a translog cost function and
a translog distance function and applies these concepts to the Swiss data on resident
and non-resident (guest) labor (and other inputs). Section 4 discusses the representation
of these elasticities using nonparametric frequency distributions and discusses the
variability of these elasticities between inputs and the differences from the mean.
Section 5 concludes.

2. Elasticities of substitution and complementarities

2.1 Representations of technologies

Input and output quantity vectors are denoted x € R’} and y € R, respectively. The
technology set is the set of all feasible (input, output) combinations:

T := {{x,y) € R{™|x can produce y}.

While the nomenclature suggests that feasibility is a purely technological notion,
a more expansive interpretation is possible: feasibility could incorporate notions of
institutional and political constraints, especially when we consider entire economies as
the basic production unit. An input requirement set for a fixed output vector y is:

L(y):={x € R [x,») € T}. 2.1

We assume throughout that L(y) is closed, strictly convex, and twice differentiable[3]
for all y € R’ and satisfies strong input disposability[4], output monotonicity[5], and
“no free lunch”[6].

The (input) distance (gauge) function, a mapping from|[7]:

Q= {(x,y) ER™|y # 0" Ax # 0" AL(y) # T}
into the positive real line (where 0% is the null vector of R"), is defined by:
D(x,y) :== max{Alx/A € L(»)}. (2.2)

Under the above assumptions, D is well defined on this restricted domain and satisfies
homogeneity of degree one, positive monotonicity, concavity, and continuity in x and
negative monotonicity in y. We assume, in addition, that it is continuously twice
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differentiable in x. (See, e.g. Fare and Primont (1995) for proofs of these properties and
most of the duality results that follow[8]).

The distance function is a representation of the technology, since (under our
assumptions):

() €T e D,y = 1.

In the single-output case (m = 1), where the technology can be represented by a
production function, f: R’ — R, D(x,f(x)) =1 and the production function is
recovered by inverting D(x,y) = 1 in y. If (and only if) the technology is homogeneous
of degree one (constant returns to scale):

D(x,y) =—. (2.3)

The cost function, C: R’} , X Y — R, where:
Y = {yl{x,y) € @ for some x}, (2.4)
is defined by:

C(p,y) = min{p-xlx € L(y)}
or, equivalently, by:
C(y,p) = min{p-xD(x,y) = 1}. (2.5)
Under our maintained assumptions, D is recovered from C by:

D(x,y) = igf{p-xlc(p,y) =1}, (2.6

and C has the same properties in p as D has in x. This establishes the duality between
the distance and the cost function. On the other hand, C is positively monotonic in ¥.
We also assume that C is twice continuously differentiable in p.

By Shephard’s lemma (application of the envelope theorem to equation (2.5)), the
(vector-valued, constant-output) input demand function, 6:RY XY —R/, is
generated by first-order differentiation of the cost function:

8(p,y) = V,C(p,). 2.7

Of course, 6 is homogeneous of degree zero in p. The (normalized) shadow-price vector,
p: Q— R, is obtained by applying the envelope theorem to equation (2.6):

px,y) = V.D(x, y). (2.8)

As is apparent from the re-writing of equation (2.6) (using homogeneity in p) as:
D(x,y) = inf{j—) xlC(p/e,y) = 1} = inf{j—) x|C(p,y) = c}, (2.9
ple (¢ ple €

where ¢ can be interpreted as (minimal) expenditure (to produce output ),
the vector p(x,y) in equation (2.8) can be interpreted as shadow prices normalized



by minimal cost[9]. In other words, under the assumption of cost-minimizing behavior:

b
Cp,»’

p(x, ) = p(8(p,),y) = (2.10)

Clearly, p is homogeneous of degree zero in x.

2.2 Elasticities of substitution or the dual elasticity
The Allen-Uzawa elasticity of substitution between inputs 7 and j is given by:

Cp,»Ci(p,y)
A : = 7] ’
TP b nCihw)
_ ei(D,y)
S](p 7y) ’
where C is the cost function and the subscripts on C indicate differentiation with
respect to the indicated variable(s):

(2.11)

0In&;(p,y)

eih) ="
J

(2.12)

is the (constant-output) elasticity of demand for input ¢ with respect to changes in the

price of input 7, and:

0i5i(p,y)
Ch,»

is the cost share of input ;. Details on the representation of technology is given in the
Appendix.
The Morishima elasticity of substitution of input ¢ for input j is:

o In(8i(pt, )/ §(p,v))

si(p,y) = (2.13)

My vy e —
PN T N (b
_ p(Ci/(p,y) _ ij(pyy)) (2.14)
Ci(p,»)  Ci(p,p)

= eij(pay) - e]j(p7y)7

where p* is the (n — 1)-dimensional vector of price ratios with p; in the denominator
and (with the use of zero-degree homogeneity of 8 in p):

8(p',y) = 8(p,y). (2.15)

The Morishima elasticity, unlike the Allen-Uzawa elasticity, is non-symmetric, since
the value depends on the normalization adopted in equation (2.14) — that is, on the
coordinate direction in which the prices are varied to change the price ratio, pj/p;
(Blackorby and Russell, 1975, 1981, 1989)

If (rA( bp,y) > 0 (that is, if 1 mcreasmg the jth price increases the optimal quantity of
input 25 we say that inputs 7 and 7 are Allen-Uzawa dual substitutes; if 0'?1( b,y <0,
they are Allen-Uzawa dual complements. Similarly, if o-M (p,y) >0 (that is,
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if increasing the jth price increases the optimal quantity of input ¢ relative to the
optimal quantity of input ]) we say that input 7 is a dual Morishima substitute for input
1;1f ch (p,y) <0, input; is a dual Morishima complement to input 7. As the Morishima
elastlclty of substitution is non-symmetric, so is the taxonomy of Morishima
substitutes and complements.

The conceptual foundations of Allen-Uzawa and Morishima taxonomies of
substitutes and complements are, of course, quite different. The Allen-Uzawa
taxonomy classifies a pair of inputs as substitutes (complements) if an increase in the
price of one causes an increase (decrease) in the quantity demanded of the other, whereas
the Morishima concept classifies a pair of inputs as substitutes (complements) if an
increase in the price of one causes the quantity of the other to increase (decrease) relative
to the quantity of the input whose price has changed. For this reason, the Morishima
taxonomy leans more toward substitutability (since the theoretically necessary decrease
in the denominator of the quantity ratio in equation (2.14) helps the ratio to decline when
the price of the input in the denominator increases). Put differently, if two inputs are dual
substitutes according to the Allen-Uzawa criterion, theoretically they must be dual
substitutes according to the Morishima criterion, but if two inputs are dual complements
according to the Allen-Uzawa criterion, they can be either dual complements or dual
substitutes according to the Morishima criterion. This relationship can be seen
algebraically from equations (2.11) and (2.14). If ; and j are dual Allen-Uzawa substitutes,
in which case e;i(p,y) > 0, then concavity of the cost function (and hence negative
semi-definiteness of the corresponding Hessian) implies that e;(p, y) — e;;(p,¥) > 0,s0
thatis a dual Morishima substitute for z. Similar algebra establishes that two inputs can
be dual Morishima substitutes when they are dual Allen-Uzawa complements.

Note that, for i #

0Ins;(p,y)
3 Inp;

so that an increase in p; increases the absolute cost share of input ¢ if and only if:

= ej(0)) — 500 =500 (i e~ 1), @216)

o (0, > 1; (2.17)

that is, if and only if inputs 7 and j are sufficiently net p substitutes. Thus, the
Allen-Uzawa elasticities provide immediate qualitative comparative-static information
about the effect of price changes on absolute shares. To obtain quantitative
comparative-static information, one needs to know the share of the jth input as well as
the Allen-Uzawa elasticity of substitution.

The Morishima elasticities immediately yield both qualitative and quantitative
information about the effect of price changes on relative input shares:

alnGi(p,3)/5(p",»))
aln(p;/pi)

where (with the use of zero-degree homogeneity of s; in p) $;(p%,v) := s;i(p,y) for all ;.
Thus, an increase in p; increases the share of input ¢ relative to input ; if and only if:

o (b,y) > 1; (2.19)

= ei(p,y) — ej(p,y) — 1= 0" (p,3) — (2.18)



that is, if and only if inputs 7 and j are sufficiently substitutable in the sense of
Morishima. Moreover, the degree of departure of the Morishima elasticity from unity
provides immediate quantitative information about the effect on the relative factor
shares.

2.3 Elasticities of complementarity or the direct elasticity
Using distance function the Morishima elasticity of substitution (proposed by
Blackorby and Russell (1975, 1981)) is given by:

sy oln(pix!,y)/pi(x’, )
7 (6) = aln(x;/x;)
A(Dij(xay) _ D]']‘(X,y)> (220)
Di(x,y)  Dj(x,y)

= e;(x,y) — e;x,y),

where D is the distance function and x’ is the (n — 1)-dimensional vector of input
quantity ratios with x; in the denominator and:

d In p;(x, )

T 2.21)

e;i(x,y) =

is the (constant-output) elasticity of the shadow price of input ; with respect to changes
in the quantity of input 7. Analogously, Blackorby and Russell (1981) proposed the
following Allen-Uzawa elasticity using the distance function:

* 4 D(x, y)Djj(x, )
7y *3) = _D(x »D;(x,y) 099
ez;(x y) (2.22)
Sf(xay)
where:
506.9) = pi(x,9)"x; (2.23)

is the,cost share of input j (assuming cost-minimizing behavior).
If o- (p,y) < 0 (that is, if increasing the jth quantity decreases the shadow price of

input z) we say that inputs 7 and j are Allen-Uzawa direct substitutes; 1f ( b,y) >0,

they are Allen-Uzawa direct complements. Similarly, if a-l-]M (p.y) < 0 (that is, if
increasing the jth quantity increases the shadow price of input 7 relative to the shadow
price of input j), we say that input 7 is a direct Morishima substitute for input z if
oM (p,v) > 0, input j is a direct Morishima complement to input 7. Dual elasticities are
fundamentally different concepts; indeed, signs in these definitions of direct
substitutability and complementarity are reversed from those in the definitions of
dual Allen-Uzawa and Morishima substitutes and complements[10]. .
Interestingly, since the distance function is concave in x, and hence eji(x,y) in
equation (2.20) is non-positive, the direct Morishima elasticity leans more toward direct
complementarity than does the direct Allen-Uzawa elasticity (in sharp contrast to the
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primal taxonomy). Similarly, if two inputs are direct Allen-Uzawa complements, they
must be direct Morishima complements, whereas two inputs can be direct Allen-Uzawa
substitutes but direct Morishima complements.

There exist, of course, dual comparative-static results linking factor cost shares and
elasticities of substitution[11]. Consider first the effect of quantity changes on absolute
shares (for ¢ # j):

alnsi(x,y) = * )
T = 5(,9) = 0 (), 224
nx;

so that an increase in x; increases the absolute share of input 7 if and only if:

e(x,y) >0 (2.25)
or, equivalently:
o x,9) > 0; (2.26)

that is, if and only if inputs 7 and j are net — ¢ Allen-Uzawa complements. Thus, the
direct elasticities provide immediate qualitative comparative-static information about
the effect of quantity changes on (absolute) shares. To obtain quantitative
comparative-static information, one needs to know the share of the jth input as
well as the Allen-Uzawa elasticity of substitution. Of course, the (constant-output)
elasticity derived from the distance function e;(x,y) yields the same qualitative
and quantitative comparative-static information.

Comparative-static information about relative income shares in the face of quantity
changes can be extracted from the Morishima elasticity using distance function:

Ani(',)/5(x ) _ : .
aln(xj/x]i) = e;(x,y) — ej(x,y) — 1= Ufy(x,y) -1, (2.27)

where (with the use of zero-degree homogeneity of X in %) #(x%,y) :=; (x,v). Thus, an
increase in x; increases the share of input ¢ relative to input ; if and only if:

@y > 1; (2.28)

that 1s, if and only if inputs ¢ and j are sufficiently complementary in terms of the direct
Morishima elasticity (or elasticity of complementarity). Moreover, the degree of
departure from unity provides immediate quantitative information about the effect on
the relative factor share. Thus, the Morishima elasticities using distance function
provide immediate quantitative and qualitative comparative-static information about
the effect of quantity changes on relative shares.

3. Empirical implementation

3.1 Specification of functional form

Parametric application of the concepts in Section 2 requires specification of a cost
function or a distance function. We adopt translog specifications, incorporating
technological change (proxied by a time index f) of each[12]:



In C(p ¥, ) =ay+ Z a 1npz + Z Bi lnyz 2 Z Z Qg 1npz lnp]
=1 j=1
n o m

m
2 Z Z Bij Iny; lny] + Z Z Yii Inp; lny] 3.1)

=1 j= =1 j=
+ 0f + Z yitInp; + Z 7itIny; + g,
=1 =1
and:
n m 1
lnD(x,y,t)zao-I—Zailnxi—i-Z,Bilnyi Q o Inx; Iny;
i=1 =1 -1
1 m n
§ Z iIny; Iny; + Z Z v Inx; Iny; (3.2)
j=1 =1 j=1

=

m
+ 60t + itlnxi+zntlnyi,+eid
i=1 i=1

where the last three terms in each specification reflect technological change and e; is
the stochastic error with zero mean[13]. The corresponding systems of share equations
are given by:

aInC(p,y. 1) - S :
sipy ) =——""= =0+ > aylnpi+ > ylhy+ut+es i=1,..n,
= —1

alnp,-
(3.3
and:
olnD(x,y,1) .
5i(9,0) = Ty ,+Zaylnx]+2y,jlny]+V,t—i—elssmr, i=1,...,n. 34)

=1 =1

The homogeneity restrictions on C and D imply the following restrictions in each of
these two specifications:

Za,- =1 and Zalj Zy] ZV, =0 V. (3.5)

One can test for homogeneity by testing for these parametric restrictions. The above
specifications of the cost and distance functions impose no restrictions on returns to
scale. Constant returns to scale will imposes the following additional restrictions on
equation (3.1) or on equation (3.2): ) ;8; = 1 and Z B = Z vi =0 Vi Inorder to
identify these parameters one needs to estimate a system of share equation with the
distance function for the direct framework, which is not trivial, and is not the focus of
this paper. Thus, in our case the test for homogeneity is also the test for constant
returns to scale. For the translog cost specification the expression for the dual Allen
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elasticity of substitution is o-l-]A = ((a;)/(si*sj)) + 1 and for Morishima elasticity of

substitution it is o}/ = s [al-jl — a'ﬂ . The direct elasticity of complementarity using

the distance function is identical to, the dual elasticity using the cost function with the
corresponding share equations as s;(x, ).

3.2 Estimation

We apply the foregoing concepts and calculating the nonparametric distribution of the
elasticities using annual data on resident and non-resident workers in Switzerland for
the 1950-1986 time period. Like rest of the Western countries non-resident labor
drastically increased in Switzerland during the 1950s and 1960s as well as there was a
steady increase in imports. Kohli (1999) used this data to examine the substitution issues
between domestic labor and foreign labor in a production theory approach for
Switzerland[14]. This database has only a single (aggregate) output, along with four
inputs — resident labor, non-resident labor, imports, and capital. Gross output and
import figures are derived from the Swiss National Income and Product Accounts. The
quantity of labor is the product of total employment and the average length of the work
week. The quantity of capital is calculated as the Torngvist quantity index of structures
and equipment. The income shares of labor and capital are derived from the National
Income and Product Accounts, and the prices of labor and capital are obtained by
deflation. The resident-worker category comprises natives as well as foreign workers
who are residents of Switzerland. Nonresident workers are holders of seasonal permits,
annual permits, or transborder permits. We use a time trend with unit annual increments
for technological change.

Tables I and II contain estimates of the systems of share equations (3.3) and (3.4),
respectively, under alternative assumptions about returns to scale. The subscripts of
the coefficients in the first column, L, N, M, K, and Y, represent resident labor,
non-resident labor, imports, capital, and output, respectively. Zellner’s SURE technique
was used to estimate the systems of factor-share equations, and the capital-share
equation was deleted for the estimation. Because of possible simultaneous-equations
bias, we also estimated three-stage least squares; the coefficients were substantially
unchanged in each case. Hausman tests rejects the hypothesis of endogenity of input
quantities in the estimation of the share equations in the direct specification and of
endogenity of prices in the dual specification. Tests for concavity of the cost function
(whence the system (3.3) is derived) were satisfied for 32 of the 37 observations.
Concavity of the distance function (whence equation (3.4) is derived) was satisfied at
23 of the 37 observations. Concavity of the cost function is a theoretical imperative.
Concavity of the distance function is implied by convexity of input requirement sets
L(), but the distance function is well defined, as are the shadow price functions given
by equation (2.10), even if input requirement sets are not convex. On the other hand, the
comparative statics of income shares under perfectly competitive pricing of inputs,
reflected in equations (2.24) and (2.27), require convexity of input requirement sets as
does the estimation of the share equations (2.10) using price data.

We first test for positive linear homogeneity of the production function under each
of these specifications. In each case, the critical value of the Wald test statistic for
constant returns to scale, under the null of v,y = yny = yuy = yxy =0, 1 9.31. The
Wald statistic for the estimates of the systems (3.3) and (3.4) under the complete



Coefficients Homogeneous technology Non-homogeneous technology
ar 0.433 (0.008) 3.469 (0.405)
ay 0.045 (0.004) —1.556 (0.229)
ay 0.309 (0.004) 0.024 (0.343)
ag 0.132 (0.002) 0.937 (0.187)
Brr —0.424 (0.065) —0.051 (0.059)
Bin 0.258 (0.038) 0.089 (0.034)
Bry 0.078 (0.032) —0.023 (0.041)
Bri 0.088 (0.113) —0.015 (0.110)
Ban —0.101 (0.029) —0.035 (0.025)
B —0.101 (0.022) —0.012 (0.025)
B —0.056 (0.07) —0.042 (0.125)
Bum 0.081 (0.029) 0.033 (0.045)
Bux —0.058 (0.067) 0.002 (0.105)
Brx —0.026 (0.069) 0.055 (0.083)
3 0.007 (0.002) 0.002 (0.001)
VN —0.008 (0.001) —0.005 (0.001)
vy 0.003 (0.001) 0.004 (0.001)
0% —0.002 (0.005) —0.001 (0.001)
YLy —0.248 (0.033)
YNY 0.131 (0.019)
Yy 0.023 (0.028)
YKy 0.094 (0.065)

Note: Standard errors in parentheses
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Table L.
Estimated coefficients of
the translog cost function

restrictions imposed by are 100.2 and 29.1, respectively; thus, positive linear
homogeneity is decisively rejected in each case.

Tables III and IV contain estimates of the dual Allen-Uzawa and Morishima
elasticities of substitution (equations (2.11) and (2.14)), and Tables V and VI contain
estimates of the direct elasticities (equations (2.22) and (2.20)), all evaluated at the
means of the variables and under alternative assumptions about returns to scale.

Let us first evaluate the qualitative information in these tables. Recall that two
factors are classified as dual (Allen-Uzawa or Morishima) substitutes if the dual
elasticity is positive and as complements if it is negative, and the reverse is true for the
direct elasticities. Of course, the non-symmetry of the Morishima elasticities raises the
possibility of ambiguities in the Morishima taxonomy. Examination of the tables,
however, reveals that there are only two qualitative asymmetries, for capital and
imports in the direct homogeneous case (Table V) and for capital and nonresident labor
in the direct non-homogeneous framework (Table VI), and in each case one of the two
elasticity estimates is statistically insignificant. Hence, it is possible to construct an
unambiguous taxonomy of (dual and direct) substitutability and complementarity for
the Morishima elasticities as well as the Allen elasticities (evaluated at the means of the
data). This taxonomy is summarized in Table VII, where S signifies (dual or direct)
substitutability and C signifies (dual or direct) complementarity.

The strongest priors exist for resident and non-resident labor, and, indeed, the two
are substitutes under either assumption about returns to scale, in either the primal or
dual specification, and with respect to either elasticity definition[15]. Thus, an increase
in the number of non-resident workers lowers the wage rate of resident workers,
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6.2 Coefficients Homogeneous technology Non-homogeneous technology
M
ar 0.291 (0.007) 0.431 (0.034)
ay 0.156 (0.005) 0.146 (0.017)
ayr 0.27 (0.009) 0.275 (0.033)
ag 0.283 (0.01) 0.148 (0.02)
272 Brr 0.070 (0.009) 0.084 (0.011)
Bin —0.068 (0.005) —0.068 (0.006)
B —0.021 (0.01) 0.002 (0.01)
Bri —0.02 (0.01) —0.018 (0.04)
By 0.039 (0.003) 0.039 (0.004)
B —0.004 (0.006) 0.01 (0.006)
By —0.033 (0.01) 0.019 (0.01)
Bur 0.11 (0.017) 0.105 (0.016)
Bux —0.085 (0.03) —0.118 (0.02)
Brx —0.02 (0.02) 0.154 (0.02)
vr —0.0002 (0.001) —0.001 (0.001)
N —0.001 (0.0004) —0.002 (0.0005)
vy —0.001 (0.001) 0.001 (0.0009)
e 0.002 (0.001) 0.002 (0.002)
Yy —0.102 (0.23)
et 0004 001
. . YMmy . (0.023)
Estimated coefficients Yiy —0.097 (0.232)
of the translog
distance function Note: Standard errors in parentheses
Allen-Uzawa Morishima
L N M K L N M K
L —-3.72 10.44 1.66 1.89 3.15 0.89 1.32
0.619) (3.903) 0.067) (0.085) (2.009) (0.082) 0.221)
N —3841 —4.67 —273 6.00 —-0.87 0.24
(44.82) (3.317) (2.089 0.771) (0.813) 0.811)
Table III M —1.54 0.11 2.28 2.18 0.90
Dual elasticities 0.132) (0.053) (0.035) (0.822) 0.18)
of substitution using K (6 ;5768) (02 (;3282) (02 5’5%) ((? 611%
the cost function: ’ : : :

homogeneous technology

Note: Standard errors in parentheses

both absolutely and relatively to the wage rate of non-resident workers. And an
increase in the wage rate of resident workers increases the demand for non-resident
workers, both absolutely and relatively to the demand for resident workers.

Some differences emerge with other pairs of inputs. First, regarding the assumption
about returns to scale, there are a couple of reversals using the dual Allen elasticity
definition and one reversal for the direct under both elasticity definitions. Since the
constant-returns-to-scale cost and distance functions are misspecified, we would conclude
that resident labor and imports are dual Allen-Uzawa substitutes and that resident labor
and capital are dual Allen-Uzawa substitutes. On the other hand non-resident labor and



imports are dual Allen-Uzawa substitutes and are direct complements under both

Direct and dual

definition of elasticity. Hence, an increase in the number of non-resident labor increases the lasticiti
. ; : . . elasticities
price of imports, both absolutely and relatively. Whereas, an increase in the wage rate of
non-resident workers increase the demand for imports. Similarly, we would conclude that
non-resident labor and capital are direct substitutes under either elasticity definition.
Hence, an increase in the number of non-resident workers lowers the rental rate on capital,
both absolutely and relatively to the wage rate of non-resident workers. 273
Allen-Uzawa Morishima
L N M K L N M K
—1.65 4.26 0.81 0.85 1.74 0.83 0.73
L (0.031) (0.404) 0.027) (0.007) (0.195) (0.002) 0.017)
—22.69 0.33 —-18 2.50 0.70 0.11
N (0.004) (0.002) (0.064) (0.002) (0.001) (0.002)
—216  —081 1.04 148 0.34 Dual le.‘b.i? IV%
M (0.014) (0.009) (0.016) (0.007) (0.008) b ual elastict 185;:
~2.28 1.06 1.35 0.38 substitution toing e
K 0122 (0007  (0.040)  (0.037) cost function:
non-homogeneous
Note: Standard errors in parentheses technology
Allen-Uzawa Morishima
L N M K L N M K
—0.41 —1.49 0.82 0.80 —0.12 0.32 0.23
L 0.02) 0.26) 0.03) 0.01) (0.126) (0.256) (0.016)
0.33 0.78 0.80 —0.46 0.31 0.23
N 0.99) 0.01) (0.06) (0.028) (0.025) (0.024)
-0.33 —-0.32 0.52 0.15 —0.04
M (0.01) (0.01) 0.015)  (0.016) (0.001) , Table V.
~017 051 0.03 0.003 Dugct glastm}hes of
K (0.03) (0.034) (0.015) (0.007) substitution using the
distance function:
Note: Standard errors in parentheses homogeneous technology
Allen-Uzawa Morishima
L N M K L N M K
—0.38 —1.50 1.02 0.82 —0.08 0.51 0.21
L (0.031) 0.027) 0.027) (0.007) (0.195) (0.002) 0.017)
—-0.32 1.55 —0.28 —047 0.15 —0.04
N (0.004) (0.002) (0.064) (0.002) (0.001) (0.002)
—081  —082 0.59 0.12 —0.17 _ Table VL
M 0014 (0009 (0008  (0.007) 0.001) Direct elasticities of
—0.10 051 0003  —0.003 substitution using the
K 0.02) 0036) (0037  (0.037) distance function:

Note: Standard errors in parentheses

non-homogeneous
technology
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Table VII.
Taxonomy for
substitutes and
complements

Dual Direct
Non- Non-
Homogeneous homogeneous Homogeneous homogeneous
technology technology technology technology
AES MES AES MES AES MES AES MES
LN S S S S S S S S
LM S S S S S C C C
LK S S S S C C C C
NM C S S S C C C C
NK C S C S C C S S
MK S S C S S S S S

It should be re-emphasized that contrasts in the classification of pairs as substitutes or
complements in the primal and the dual do not constitute any kind of theoretical or
econometric inconsistency: the direct and dual elasticities measure conceptually distinct
phenomena when there are more than two inputs[16]. The dual elasticities measure the
effect on quantities of price changes whereas the direct elasticities measure the effect on
prices of changes in quantities.

Finally, regarding the difference in taxonomies induced by the two elasticity
concepts, it is clear that the dual Morishima elasticity concept is more conducive to
substitutability than the dual Allen-Uzawa elasticity, as shown theoretically in Section 2.
In some (dual elasticity) cases, pairs are classified as complements by the Allen elasticity
concept but as substitutes by the Morishima concept. Interestingly, however, there is no
difference in the classification scheme in the dual. Again, we wish to re-emphasize that
there is no theoretical or econometric reason why the two elasticity concepts should yield
comparable qualitative conclusion about substitutability/complementarity; they are
measuring different concepts, as discussed in Section 2.

3.3 Elasticities reported at the mean

To consider the quantitative elasticity results, we take note of the fact that the
Allen-Uzawa elasticity of substitution has no meaningful quantitative interpretation, as
pointed out by Blackorby and Russell (1975, 1989). The size of the simple cross price
elasticity €;;(p,y) is meaningful, but dividing by the share of input, as in equation (2.11),
to obtain the Allen-Uzawa elasticity, o-l;l( p,y), undermines this quantitative content.
Thus, to facilitate consideration of quantitative comparative statics, we list the price
elasticities and their duals, defined by equations (2.12) and (2.21) and evaluated at the
means of the data, in Table VIIL. Of course, these elasticities are non-symmetric.

Not surprisingly, from Table VIII we see that the quantitative estimate of elasticity at
the mean is different under the two specification of the technology. We focus on the
quantitative relationships between the two types of labor under the (preferred)
non-homogeneous specification of the technology. The estimated cross price elasticities
in Table VIII indicate that a 1-percent increase in the wage rate of non-resident workers
would increase the employment of resident labor by 0.3 percent (at the means of the
data), whereas a 1-percent increase in the wage rate of resident labor would increase the
employment of non-resident labor by 1.8 percent[17]. Table III indicates that a 1-percent
increase in the price of non-resident labor would increase the quantity ratio of resident



L N M
Dual price elasticity: homogeneous technology
L —1.577 0.674 0.463 0.44
N 4423 —-25 —1.286 —0.636
M 0.703 —0.297 -0.431 0.025
K 0.802 —0.176 0.030 —0.879
Dual price elasticity: non-homogeneous technology
L —0.697 0.275 0.225 0.197
N 1.803 —1.477 0.093 —-0418
M 0.341 0.022 —0.603 0.240
K 0.359 —0.116 0.288 —0.531
Direct quantity elasticity: homogeneous technology
L -0411 —0.096 0.230 0.185
N —0.631 -0.33 0.217 —0.279
M 0.348 0.050 —0.327 —0.072
K 0.338 —0.077 —0.086 —0.853
Direct quantity elasticity: non-homogeneous technology
L —0.614 —0.096 0.284 0.19
N —0.631 -0.33 0.434 0.527
M 0431 0.1 —0.345 —0.190
K 0.346 0.146 —0.228 —0.105

Direct and dual
elasticities

275

Table VIIIL.
Price and quantity
elasticities ¢; and &;

labor to non-resident labor by 1.7 percent, while a 1-percent increase in the wage rate
of resident labor would increase the quantity ratio of non-resident to resident labor by
2.5 percent[18].

The direct price elasticity estimates in Table VIII suggest that a 1-percent increase
in the number of nonresident workers would lower the wage rate of resident workers
by 0.1 percent, while a 1-percent increase in the number of resident workers would
lower the wage rate of non-resident workers by 0.6 percent. From Table VI, it appears
that a 1-percent increase in the number of non-resident workers would lower the
relative wage rate (of non-resident to resident workers) by just 0.1 percent, while a
1-percent increase in the number of resident workers would lower the relative wage
rate (of resident to non-resident workers) by 0.5 percent.

The estimated dual Allen-Uzawa elasticity of substitution does provide immediate
qualitative information about absolute shares, as reflected in equation (2.16). Thus, the
elasticity of 4.3in Table IV indicates that the share of either type of labor input is enhanced
by an increase in the wage rate of the other labor type. Similarly, from (2.24) and Table VI,
we see from the negative sign of the direct Allen-Uzawa elasticity that an increase in the
quantity of either input decreases the absolute share of the other labor input. Equations
(2.22) and (2.27), along with the estimates of Morishima elasticities in Tables IV and VI,
provide both qualitative and quantitative information about the comparative statics of
relative income shares. Thus, from Table IV, we see that a 1-percent increase in the wage
rate of non-resident workers increases the share of resident workers relative to
non-resident workers by 0.7 percent, while a 1-percent increase in the wage rate of resident
workers increases the share of non-resident workers relative to resident workers by
1.5 percent[19]. The direct Morishima elasticities provide information about the effect on
relative shares of changes in input quantities. Table VI indicates that a 1-percent increase
in the quantity of non-resident labor decreases the share of resident labor relative to
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Table IX.
Range for the dual
and direct elasticity

non-resident labor by 1.1 percent, whereas a 1-percent increase in the quantity of resident
labor decreases the share of non-resident labor relative to resident labor by 1.5 percent.

3.4 Nonparametric distribution of the elasticities
All of the foregoing calculations and interpretations are carried out at the means of the
data. While this is a standard way of reporting elasticity results, it should be emphasized
that the interpretations could be egregiously in error for any particular year, unless the
elasticities were constant over time and over the domain of the cost or distance function.
Even where the estimated standard errors, also calculated at the mean, are small relative
to the elasticity size, there is no reason to believe that the elasticity is time invariant or
insensitive to the values of the input quantities or prices. For a particular question about
a particular year, one can calculate the appropriate elasticity. For the purpose of this
paper, we summarize the information about the elasticities in two ways. First, Table IX
lists the ranges of the elasticity estimates (under the non-homothetic technology
specifications). It can be seen that the range is fairly tight for some pairs of inputs for
both elasticity concepts: namely, resident labor and imports, resident labor and capital,
and imports and capital. On the other hand, the range is quite large for other pairs. Note,
in particular, that the (qualitative) classification of two inputs as substitutes or
complements is itself sensitive to the choice of the sample point at which to do the
calculation in the cases of the dual Allen elasticity for non-resident labor and imports, the
dual Morishima elasticity for non-resident labor and capital, and the direct Morishima
elasticity for resident and non-resident labor and for non-resident labor and imports.
A second way to summarize the information about the elasticity values over the entire
sample space is frequency distributions. Frequency distributions are useful because they
give the probability of the elasticity for various elasticity intervals, which might be useful
for policy purposes over and above summary information such as a range or an index. We
have constructed nonparametric, kernel-based density estimates of the distributions of
each of the elasticities (essentially “smoothed” histograms of elasticity values) over the
entire sample (numbering 72 distributions)[20]. While many of the distributions
look radically different for the linear homogeneous and non-homogeneous cases,

Dual Direct

Non-homogeneous technology Non-homogeneous technology

AES MES AES MES
Min. Max. Min. Max. Min. Max. Min. Max.
LN 3.15 8.15 1.56 2.56 —4.46 —0.64 —0.68 0.47
NL 1.94 4.63 -1.86 0.16
LM 0.78 0.84 0.81 0.85 1.01 1.02 0.55 0.69
ML 1.00 1.06 0.78 0.84
LK 0.83 0.88 0.81 0.85 0.79 0.85 0.19 0.35
KL 1.04 1.08 0.04 0.21
NM -0.96 0.61 0.39 0.77 1.32 2.63 -05 0.68
MN 1.27 2.34 -05 0.68
NK —6.32 —0.59 -091 0.39 1.72 431 0.52 111
KN 1.14 2.21 —0.46 0.73
MK 1.03 1.04 0.73 0.79 —0.64 -038 -0.16 —0.03
KM 0.86 091 0.05 0.16




some look similar. This raises the possibility that, even though the hypothesis of constant
returns to scale is easy to reject (at least for this data set), the apparent misspecification
might have little effect on estimated elasticity values and hence on qualitative and
quantitative comparative statics of price, quantities, and income shares. We test this
hypothesis formally by testing for the difference between the elasticity distributions
under constant returs to scale vs non constant returns to scale technology. In particular,
Fan and Ullah (1999) have proposed a nonparametric (time series) test for the comparison
of two unknown distributions, say f and g — that is, a test of the null hypothesis,
Hy: f(x) =g(x) for all x, against the alternative, H; : f(x) # g(x) for some x[21].
Tables Al and AII contain the results of carrying out these tests. The hypothesis that the
two distributions are identical is rejected in every case but one: the dual Allen elasticity
between non-resident labor and capital. Thus, it is safe to say that the misspecification of
constant returns to scale, required for the Hicks (1970) and Sato and Koizumi (1973) dual
elasticity concept results in serious errors in elasticity estimates and hence in serious
errors in the comparative statics of prices, quantities, and income shares.

4. Summary and concluding remarks

Using a Swiss dataset this paper empirically estimates the elasticity of substitution in
the dual framework to asses the effect of price change on the input quantity using the
translog cost function and in the primal framework to asses the effect of quantity
change on price using the translog distance function translog distance function. We
reconcile and summarize the Allen-Uzawa and Morishima elasticity in the primal and
dual framework. We also test and reject the hypothesis of homotheticity under two
different specifications of the technology. Maintaining a non-homogeneous translog
(cost or distance function) technology, we find that misspecification of the technology
as homogeneous of degree one results in statistically significant errors in the estimated
elasticities of substitution and hence in assessments of the effects on input demands,
prices, or shares of changes in quantities or prices.

This paper demonstrates that reporting elasticity of substitution at the mean, the
usual practice in the literature, might give incorrect conclusion regarding whether the
inputs are substitutes or complements as well as the degree of substitution. We not only
give the range for the elasticity estimates but also plot nonparametric distributions for
the elasticity estimated under homogenous and non-homogenous technology. We find
that the dual Allen elasticity for non-resident labor and imports, the dual Morishima
elasticity for non-resident labor and capital, and the direct Morishima elasticity for
resident and non-resident labor and for non-resident labor and imports are sensitive to
the data point where we are calculating these elasticities. In all the cases except for the
dual Allen elasticity between non-resident labor and capital the equality of two
distributions under homogenous vs non-homogenous technology is rejected.

Overall we find some interesting elasticity estimates for non-resident labor for
Switzerland during this time period. Using a production theory open economy model
we find that the foreign and domestic labor are substitutes for Switzerland. But the
magnitude of the elasticity for these two kind of labor in the dual and direct framework
is very different. A one percent increase in the quantity of non-resident worker lowers
the wages of resident workers by 0.1 percent. Whereas, from Morishima dual
elasticity we find that a one percent increase in the wages of nonresident workers
increase the share of resident workers relative to non-resident workers by 0.7 percent.
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Non-resident labor and imports are complements — so more foreign workers will
increase the price for imports and an increase in the wage rate of non-resident workers
will increase the demand for imports. Whereas, non-resident labor and capital are
direct substitutes, though switch between Allen complement and Morishima substitute
in the dual framework. These findings shows that when examining the effect of foreign
labor in production one needs to estimate various measures of elasticity.

Notes

1.

~N O U1~

10.

11.

12.

13.

14.
15.

Davis and Shumway (1996) show that the Morishima elasticities are the correct measure of
the percentage change in relative factors for a percentage change in price, isoquant
curvature, and changes in relative factor shares for changes in relative prices only when the
technology is homethetic.

. Even if this representation of technology is well known it is important to mention it here to

help the reader, particularly who are new to this literature.

. These assumptions are stronger than needed for much of the conceptual development that

follows, but in the interest of simplicity we maintain them throughout.

. L(y) =L(» +RVy eRT.

.=y =L() C L.

Ly = 00 = 00 & L(y).

. We restrict the domain of the distance function to assure that it is globally well defined. An

alternative approach (Fire and Primont, 1995) is to define D on the entire non-negative
(n + m)-dimensional Euclidean space and replace “max” with “sup” in the definition. See
Russell (1997) for a comparison of these approaches.

. Whatever is not there can be found in Diewert (1974) or the Fuss and McFadden (1978)

volume.

. See Fare and Grosskopf (1994) and Russell (1997) for analyses of the distance function and

associated shadow prices.

The dual Allen-Uzawa and Morishima elasticities of substitution are idential when # = 2, as
are the direct Allen-Uzawa and Morishima elasticities.

While shadow prices and direct elasticities are well defined even if the input requirement
sets are not convex, the comparative statics of income shares using these elasticities requires
convexity (as well, of course, as price-taking, cost-minimizing behavior), which implies
concavity of the distance function in x. By way of contrast, convexity of input requirement sets
is not required for the comparative statics of income shares using direct elasticities, since the
cost function is necessarily concave in prices. See Russell (1997) for a discussion of these issues.

We choose these two specifications because of their flexibility (in the sense of both Diewert
(1971) and Jorgenson and Lau (1975)). The two specifications represent different
technologies; that is, the translog is not self-dual. Moreover, it is not possible to find
closed-form duals to either of these specifications, unless they degenerate to representations
of a Cobb-Douglas technology (which is self-dual). Of course, the stochastic structure is also
quite different in the two specifications.

We choose the same notation for the parameters in the two translog specification for the ease
of reporting the estimated results.

We thank Ulrich Kohli for providing these data.

See the finding of substitutability between immigrant and native workers for the USA by
Grossman (1982).



16. As noted earlier, they require different theoretical and stochastic specifications of the
technology as well.

17. Itis interesting to note here that, under the (apparently misspecified) homogeneous technology,
a 1-percent increase in the wage rate of resident labor would increase the employment of
non-resident labor by a whopping 4.4 percent, an estimate that strains credibility.

18. Again, note that under the misspecified homogeneous technology, a 1-percent change in a
wage rate generates an estimated 3-percent or 6-percent change in the quantity ratio, again
challenging our intuition.

19. Note that, under the (misspecified) homogeneous technology, a 1-percent increase in the
wage rate of resident workers increases the share of non-resident workers by a
hard-to-believe 5 percent.

20. See the Appendix for the particulars. We report 36 distributions in the paper and others are
available from the author upon request.

21. See the Appendix for an exact description of the test statistic.
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Appendix
Each of the distributions in Figures A1-A6 is a kernel-based estimate of a density function, f(-),
of a random variable x, based on the standard normal kernel function and optimal bandwidth:

f(x>=;hj_ilk(xfhx),

where J[Zk(z,[;)dw =1 and ¢ = (x; — x)/h. In this construction, / is the optimal window width,
which 1s a function of the sample size # and goes to zero as n — oo. We assume that % is a
symmetric standard normal density function, with non-negative images. The optimal window
width is chosen by minimizing the mean integrated square error. See Pagan and Ullah (1999)
for details.

The statistic used to test for the difference between two distributions, predicated on the
integrated-square-error metric on a space of density functions, I(f,2) = [.(f(x) — g()2dx, is:

nh'?T

T ~ N(©,1), (AD)
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Figure Al.

Distributions of dual Allen
and Morishima elasticities:
non-resident labor and
resident labor
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Notes: (a) Allen-Uzawa elasticity of substitution between non-resident labor and resident labor
with non-homogeneous technology; (b) Allen-Uzawa elasticity of substitution between non-
resident labor and resident labor with homogeneous technology; (c) Morishima elasticity of
substitution between resident labor and non-resident labor with non-homogeneous technology;
(d) Morishima elasticity of substitution between resident labor and non-resident labor with
homogeneous technology; (e) Morishima elasticity of substitution between non-resident labor
and resident labor with non-homogeneous technology; (f) Morishima elasticity of substitution
between non-resident labor and resident labor with homogeneous technology

where:
= 5 SR 05 a0 )] e
@#))
and:
s S ) ) )] [

=1 j=1

As shown by Fan and Ullah (1999), the test statistic asymptotically goes to the standard normal,
but the sample in our study is only 37 years. Thus, we do a bootstrap approximation with 2,000
replications to find the critical values for the statistic at the 5-percent and 1-percent levels of
significance (Tables AI-ALV).
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Notes: (a) Allen-Uzawa elasticity of substitution between imports and resident labor with non-
homogeneous technology; (b) Allen-Uzawa elasticity of substitution between imports and
resident labor with homogeneous technology; (c) Morishima elasticity of substitution between
imports and resident labor with non-homogeneous technology; (d) Morishima elasticity of
substitution between imports and resident labor with homogeneous technology; (e) Morishima
elasticity of substitution between resident labor and imports with non-homogeneous
technology; (f) Morishima elasticity of substitution between resident labor and imports with
homogeneous technology

Figure A2.
Distributions of dual Allen
and Morishima elasticities:
imports and resident labor




IGDR
6,2

284

Figure A3.

Distributions of dual Allen
and Morishima elasticities:

imports and capital
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Notes: (a) Allen-Uzawa elasticity of substitution between imports and capital with non-
homogeneous technology; (b) Allen-Uzawa elasticity of substitution between imports and
capital with homogeneous technology; (c) Morishima elasticity of substitution between
imports and capital with non-homogeneous technology; (d) Morishima elasticity of
substitution between imports and capital with homogeneous technology; (e) Morishima
elasticity of substitution between capital and imports with non-homogeneous technology;
(f) Morishima elasticity of substitution between capital and imports with homogeneous
technology
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Notes: (a) Allen-Uzawa elasticity of substitution between resident labor and capital with non
-homogeneous technology; (b) Allen-Uzawa elasticity of substitution between resident labor
and capital with homogeneous technology; (c) Morishima elasticity of substitution between
resident labor and capital with non-homogeneous technology; (d) Morishima elasticity of
substitution between resident labor and capital with homogeneous technology; (e) Morishima
elasticity of substitution between capital and resident labor with non-homogeneous
technology; (f) Morishima elasticity of substitution between capital and resident labor with
homogeneous technology

Figure A4.
Distributions of direct
Allen and Morishima
elasticities: resident labor
and capital
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Figure A5.
Distributions of direct
Allen and Morishima
elasticities: non-resident
labor and capital
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Notes: (a) Allen-Uzawa elasticity of substitution between non-resident labor and imports with
non-homogeneous technology; (b) Allen-Uzawa elasticity of substitution between non-
resident labor and capital with homogeneous technology; (c) Morishima elasticity of
substitution between non-resident labor and capital with non-homogeneous technology;

(d) Morishima elasticity of substitution between non-resident labor and capital with
homogeneous technology; (e) Morishima elasticity of substitution between capital and non-
resident labor with non-homogeneous technology; (f) Morishima elasticity of substitution
between capital and non-resident labor with homogeneous technology
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Notes: (a) Allen-Uzawa elasticity of substitution between non-resident labor and imports with
non-homogeneous technology; (b) Allen-Uzawa elasticity of substitution between non-resident
labor and imports with homogeneous technology; (c) Morishima elasticity of substitution
between non-resident labor and imports with non-homogeneous technology; (d) Morishima
elasticity of substitution between non-resident labor and imports with homogeneous
technology; (e) Morishima elasticity of substitution between non-resident labor and imports
with non-homogeneous technology; (f) Morishima elasticity of substitution between non-
resident labor and imports with homogeneous technology
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Figure AG6.
Distributions of direct
Allen and Morishima
elasticities: non-resident
labor and import

5 percent significance level 1 percent significance level

Test Lower critical ~ Upper critical ~ Lower critical ~ Upper critical
statistic value value value value

LN 0.402 0.1534 0.2292 0.1402 0.2439 Reject

ML 27.56 0.0024 0.0035 0.0023 0.0036 Reject

MK 33049 0.0002 0.0004 0.0002 0.0004 Reject
Fail to

NK 0.081 0.0426 0.0913 0.0396 0.1062 reject

NM 1.67 0.0411 0.0918 0.0348 0.0988 Reject

Table Al

Distribution hypothesis
tests: dual Allen elasticity
of substitution
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5 percent level of significance

1 percent level of significance

6,2 Test Lower critical Upper critical Lower critical Upper critical
statistic value value value value
LN 2.19 0.0295 0.0511 0.0269 0.0546 Reject
NL 0.802 0.0792 0.1300 0.0723 0.1381 Reject
288 MK 30.78 0.0023 0.0034 0.0021 0.0036 Reject
KM 5174 0.0013 0.0021 0.0012 0.0036 Reject
ML 39.83 0.0017 0.0028 0.0015 0.0031 Reject
LM 5097 0.0011 0.0018 0.001 0.0018 Reject
Table AIL  NK 0.324 0.0066 0.0167 0.0057 0.0182 Reject
Distribution hypothesis KN 1.762 0.0271 0.0461 0.0251 0.0495 Reject
tests: dual Morishima MN 1.24 0.0207 0.0340 0.0192 0.0364 Reject
elasticity of substitution ~ NM 6.06 0.0107 0.0206 0.0097 0.0221 Reject
5 percent level of significance 1 percent level of significance
Test Lower critical Upper critical Lower critical Upper critical
statistic value value value value
NM 5.00 0.0134 0.0311 0.0117 0.0332 Reject
NL 04 0.1498 0.2287 0.1360 0.2439 Reject
Table AIIL LK 14.38 0.0007 0.0019 0.0007 0.0023 Reject
Distribution hypothesis ~ NK 0.81 0.0078 0.0197 0.0068 0.0236 Reject
tests: direct Allen MK 778 0.0089 0.0161 0.0076 0.0175 Reject
elasticity of substitution ML 316.98 0.0002 0.0003 0.0002 0.0003 Reject
5 percent level of significance 1 percent level of significance
Test Lower critical Upper critical Lower critical Upper critical
statistic value value value value
NM 12.42 0.0057 0.0115 0.0042 0.0122 Reject
MN 0.03 0.0006 0.0016 0.0005 0.0019 Reject
LN 2.19 0.0286 0.0509 0.0261 0.0541 Reject
NL 0.8 0.0766 0.1296 0.0697 0.1378 Reject
LK 65.49 0.0011 0.0016 0.001 0.0017 Reject
KL 412 0.0017 0.0025 0.0015 0.0027 Reject
NK 194 0.007 0.0159 0.0061 0.0177 Reject
KN 043 0.0078 0.0197 0.0068 0.0236 Reject
MK 16.03 0.0038 0.0051 0.0035 0.0054 Reject
KM 23.69 0.0026 0.0044 0.0023 0.0047 Reject
Table AIV. ML 3718 0.0017 0.0021 0.0016 0.0022 Reject
Distribution hypothesis 13/ 9.8 0.0027 0.0038 0.0026 0.004 Reject
tests: direct Morishima ~ NK 1.94 0.007 0.0159 0.0061 0.0177 Reject
elasticity of substitution KN 0.43 0.0078 0.0197 0.0068 0.0236 Reject
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